Genetic Variants in EPAS1 Contribute to Adaptation to High-Altitude Hypoxia in Sherpas
نویسندگان
چکیده
Sherpas comprise a population of Tibetan ancestry in the Himalayan region that is renowned for its mountaineering prowess. The very small amount of available genetic information for Sherpas is insufficient to explain their physiological ability to adapt to high-altitude hypoxia. Recent genetic evidence has indicated that natural selection on the endothelial PAS domain protein 1 (EPAS1) gene was occurred in the Tibetan population during their occupation in the Tibetan Plateau for millennia. Tibetan-specific variations in EPAS1 may regulate the physiological responses to high-altitude hypoxia via a hypoxia-inducible transcription factor pathway. We examined three significant tag single-nucleotide polymorphisms (SNPs, rs13419896, rs4953354, and rs4953388) in the EPAS1 gene in Sherpas, and compared these variants with Tibetan highlanders on the Tibetan Plateau as well as with non-Sherpa lowlanders. We found that Sherpas and Tibetans on the Tibetan Plateau exhibit similar patterns in three EPAS1 significant tag SNPs, but these patterns are the reverse of those in non-Sherpa lowlanders. The three SNPs were in strong linkage in Sherpas, but in weak linkage in non-Sherpas. Importantly, the haplotype structured by the Sherpa-dominant alleles was present in Sherpas but rarely present in non-Sherpas. Surprisingly, the average level of serum erythropoietin in Sherpas at 3440 m was equal to that in non-Sherpas at 1300 m, indicating a resistant response of erythropoietin to high-altitude hypoxia in Sherpas. These observations strongly suggest that EPAS1 is under selection for adaptation to the high-altitude life of Tibetan populations, including Sherpas. Understanding of the mechanism of hypoxia tolerance in Tibetans is expected to provide lights to the therapeutic solutions of some hypoxia-related human diseases, such as cardiovascular disease and cancer.
منابع مشابه
Sherpas share genetic variations with Tibetans for high‐altitude adaptation
BACKGROUND Sherpas, a highlander population living in Khumbu region of Nepal, are well known for their superior climbing ability in Himalayas. However, the genetic basis of their adaptation to high-altitude environments remains elusive. METHODS We collected DNA samples of 582 Sherpas from Nepal and Tibetan Autonomous Region of China, and we measured their hemoglobin levels and degrees of bloo...
متن کاملDown-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia
Tibetans are well adapted to the hypoxic environments at high altitude, yet the molecular mechanism of this adaptation remains elusive. We reported comprehensive genetic and functional analyses of EPAS1, a gene encoding hypoxia inducible factor 2α (HIF-2α) with the strongest signal of selection in previous genome-wide scans of Tibetans. We showed that the Tibetan-enriched EPAS1 variants down-re...
متن کاملA non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken
The hypoxia adaptation to high altitudes is of considerable interest in the biological sciences. As a breed with adaptability to highland environments, the Tibetan chicken (Gallus gallus domestics), provides a biological model to search for genetic differences between high and lowland chickens. To address mechanisms of hypoxia adaptability at high altitudes for the Tibetan chicken, we focused o...
متن کاملTwo functional loci in the promoter of EPAS1 gene involved in high-altitude adaptation of Tibetans
EPAS1 involves in the hypoxic response and is suggested to be responsible for the genetic adaptation of high-altitude hypoxia in Tibetans. However, the detailed molecular mechanism remains unknown. In this study, a single nucleotide polymorphism rs56721780:G>C and an insertion/deletion (indel) polymorphism -742 indel in the promoter region showed divergence between Tibetans and non-Tibetan lowl...
متن کاملEvolutionary selected Tibetan variants of HIF pathway and risk of lung cancer
Tibetans existed in high altitude for ~25 thousand years and have evolutionary selected unique haplotypes assumed to be beneficial to hypoxic adaptation. EGLN1/PHD2 and EPAS1/HIF-2α, both crucial components of hypoxia sensing, are the two best-established loci contributing to high altitude adaptation. The co-adapted Tibetan-specific haplotype encoding for PHD2:p.[D4E/C127S] promotes increased H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012